Add research to **Euler Equations (Fluid Dynamics)** by attaching materials such as relevant webpages, videos, images or pdf documents here

**Euler Equations (Fluid Dynamics)** Summary

Equation

**Euler equations (fluid dynamics)**

In fluid dynamics, the Euler equations are a set of quasilinear hyperbolic equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. The equations represent Cauchy equations of conservation of mass (continuity), and balance of momentum and energy, and can be seen as particular Navier–Stokes equations with zero viscosity and zero thermal conductivity. In fact, Euler equations can be obtained by linearization of some more precise continuity equations like Navier–Stokes equations in a local equilibrium state given by a Maxwellian. The Euler equations can be applied to incompressible and to compressible flow – assuming the flow velocity is a solenoidal field, or using another appropriate energy equation respectively (the simplest form for Euler equations being the conservation of the specific entropy). Historically, only the incompressible equations have been derived by Euler. However, fluid dynamics literature often refers to the full set – including the energy equation – of the more general compressible equations together as "the Euler equations".From the mathematical point of view, Euler equations are notably hyperbolic conservation equations in the case without external field (i.e., in the limit of high Froude number). In fact, like any Cauchy equation, the Euler equations originally formulated in convective form (also called "Lagrangian form") can also be put in the "conservation form" (also called "Eulerian form"). The conservation form emphasizes the mathematical interpretation of the equations as conservation equations through a control volume fixed in space, and is the most important for these equations also from a numerical point of view. The convective form emphasizes changes to the state in a frame of reference moving with the fluid.

Euler Equations (Fluid Dynamics)on Social Media